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tional to the part excited by electrons with the primary 
energy. This situation is more severe than in the case 
of the transmission experiment of Hall (1966). Under 
the experimental conditions of the Bragg case with a 
thick crystal, multiple processes of inelastic electron 
scattering continue until electrons wholly lose their 
energy in the crystal, and the integration of X-rays 
excited in the course of these processes inevitably makes 
a high background. In the case of a transmission ex- 
periment, on the other hand, the multiple process 
ceases when electrons emerge from a crystal which is 
very thin. As has already been pointed out, it should 
be profitable to use incident electrons of lower energies, 
say 10-20 keV, for the purpose of the present study. 
However, some other experimental difficulties will then 
arise. 
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The angular and voltage dependence of the diffracted intensity for electrons in the energy range of 
150--900 volts from a clean tungsten (110)surface has been measured with a single-crystal diffrac- 
tometer. Selecting the angle of incidence and the electron wavelength to satisfy the Bragg condition the 
crystal is rotated about its normal, and a Renninger plot of diffracted intensity versus azimuthal angle is 
made. Strong intensity variations are observed when the plane of diffraction is parallel to those low 
index crystallographic planes which contain relatively dense atomic rows. Additional structure occurs 
for each intersection of an extended reciprocal lattice point with the Ewald sphere. For some orienta- 
tions the intensity is reduced to half the value within one degree, which is the beam divergence. When 
simultaneous diffraction does not occur, the intensities of the Bragg maxima are close to the back- 
ground. The integral order Bragg maxima observed in electron diffraction are thus shown to have 
their origin in multiple diffraction. The frequently observed fractional order Bragg maxima are pre- 
dicted to have the same origin. Renninger plots for such maxima show this to be the case. In addition 
the appearance of the fractional order peaks should depend only on the geometry for multiple diffrac- 
tion. Intensity versus voltage curves for the beam incident along the [hkl] direction are predicted to have 
maxima of order (h2+k2+12)-l, which is verified. The implication of these observations in terms of 
previous two-beam models is discussed. 

Introduction 

Much interest has recently been shown in obtaining a 
suitable theory for the diffraction of low energy elec- 
trons by single crystals. The solution of a model con- 

* Supported by AFOSR Contract AF 49 (638)-1369. 

taining the formalism for all dynamic interactions pos- 
sible is quite forbidding and it is necessary to decide, 
in advance, which processes must be included in a 
theory which is expected to allow a quantitative inter- 
pretation of diffracted intensities. An examination of 
the literature of electron diffraction will show that there 
is little agreement as to the importance of dynamical 
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effects at all, and much interpretation of experimental 
results has been made on the basis of kinematical 
theory alone; as a result, the angular and wavelength 
dependence of the diffracted intensities appears to be 
anomalous, and there has yet to be a three-dimensional 
structure determined by low energy electron diffrac- 
tion. The purpose of this communication is to show, 
at least for the case of tungsten, that dynamic effects 
dominate the observed diffraction intensities, and to 
propose a model of the diffraction which allows a selec- 
tion of the important dynamic processes. 

The approach to be followed is that common in 
X-ray diffraction analysis, which provides a convenient 
geometry for both the experiments themselves, and the 
interpretation of the results in terms of general diffrac- 
tion parameters. The fact that one deals with electrons, 
rather than X-rays, does not affect the geometry at all, 
but does require the introduction of a particular set 
of useful approximations, and appropriate experimen- 
tal restrictions. 

Geometrical considerations 

Reciprocal lattice 
The standard Ewald construction provides a method 

of determining the geometrically allowed reflections 
for a given lattice, as a function of arbitrary electron 
wavelength, 2, diffraction angle, 0, and crystal orienta- 
tion (Ewald, 1921; James, 1962). An additional par- 
ameter, {0, can be introduced which determines the 
orientation of the incident plane with respect to a par- 
ticular plane in the same zone defined as the origin. 
In the experiments described below, the crystal is cut 
and oriented so that the surface is the (110) plane, the 
surface normal is then the [110] direction, and the 
reference plane belongs to the {110} zone. 

For arbitrary 2, 0, ~, the three Laue conditions are 
not in general satisfied. When the crystal lattice is com- 
posed of only a few biperiodic planes, the resulting 
reciprocal lattice consists of a set of rods perpendicular 
to these planes, and solutions to the two Laue condi- 
tions always exist. The intensity along these reciprocal 
lattice rods has a modulation (in the z direction) given 
by the term: 

in the structure factor Fn~: 

F,,= Z3q exp{2,i [hx, + ky, + (-S--~S°-). Z,]}. 
t 

For the following discussion, it is sufficient to de- 
scribe the reciprocal lattice in terms of these modulated 
rods, where the intensity along a rod has a maximum 
at the expected three-dimensional lattice points, and 
is non-zero elsewhere; the origin and exact nature of 
the modulation being unimportant. 

In the case of X-ray diffraction, the reciprocal lattice 
is explored by observing the variation in intensity of 
the specularly reflected beam at constant wavelength 
as the angle of reflection, 0, is varied. In principle, the 
same information may be obtained by varying the 
wavelength, 2, maintaining 0 constant, a more con- 
venient choice of independent variable in the case of 
electron diffraction. Both 0 and 2 may be seen to be 
equivalent parameters in the kinematical limit, and the 
resulting intensity variations may both be considered 
to be rocking curves. The diffraction conditions are 
fulfilled at each intersection of the sphere of reflection 
with an allowed reciprocal lattice rod or point, and 
the rocking curves show Bragg maxima for the car- 
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Fig. 1. Standard construction showing simultaneous beams occurring in a (110) orientation of the diffraction plane. The 
right hand diagram shows the projection of horizontal sections through the sphere of reflection indicating some of the other 
reflections. This geometry corresponds to about 500 volts for tungsten. 
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responding values of the diffraction parameters 2n and 
0n, thus defined. This requirement is fulfilled indepen- 
dent of the orientation, ~p, of the incident beam. 

The details of this construction can be seen in Fig. 1, 
where the plane of diffraction is chosen as (110) and 
the surface normal is in the [110] direction. The left 
hand diagram shows the intersection of the sphere of 
reflection with the (110) plane of the reciprocal lattice, 
the specularly reflected beam showing the (550) re- 
flection. It can be readily seen that both types of rock- 
ing curve (intensity versus 0 and intensity versus volt- 
age), explore the shape of the reciprocal lattice rod. 
The right hand diagram shows the projection on the 
(110) plane of the intersections of the Ewald sphere 
with the reciprocal lattice. Each successive plane paral- 
lel to the surface has the circular intersection shown, 
and passes through successive points (n,n,O) of the 
(110) rod. The plane among these passing through the 
origin is known as the 0-Laue plane. 

Rota t ion  m e t h o d  

From Fig. 1 it may be seen that for any 2B and 0B, 
the crystal can be rotated about its normal without 
affecting the diffraction condition imposed on 2B and 
OB. During the rotation the reciprocal lattice moves 
with respect to the sphere: in Fig. 1, the lattice moves 
with respect to the circles representing the intersection 
of each succeeding (n, n, 0) plane with the sphere. Two 

x5  

0~1 012 023 014 015 0~6 017 018 019 
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Fig.2. Intensity versus voltage curves for the specularly 
reflected beam. Upper curve: [100] direction, 20=90°; 
middle curve: [ 110] direction, 20 = 180 o; lower curve: [111 ] 
direction, 20=70032 ' . The large peaks occur at voltages 
near to the expected integral order Bragg reflections, and 
the fractional order peaks correspond to 1/(h2+k2+l 2) of 
the integral order peak separation. 

points, the origin and the normal Bragg reflection, in 
this case 550, remain fixed and define the axis of rota- 
tion. 

If the intensity of the normally reflected beam is re- 
corded during the rotation, any variation must be due 
to the dynamical interaction of other diffracted beams 
within the crystal with the specularly reflected beam. 
A plot of the intensity versus the rotation angle f0 is 
known as a rotation diagram or Renninger plot. 

For the three-dimensional reciprocal point lattice, 
each reciprocal lattice point is recorded as it enters 
the sphere of reflection. The existence of several simul- 
taneous intersections is known as multiple diffraction* 
as discussed by Renninger (1937), Darbyshire & Coo- 
per (1935), and Kossel (1936). The geometrical argu- 
ment for multiple diffraction may be seen by referring 
to Fig. 1. If k0 is the wave vector of the primary beam, 
then ki = k0 + Hi, where Hi is a reciprocal lattice vector. 
In this case, ki corresponds to a reflection if Hi is on 
the sphere of reflection. If simultaneous reflections 
H1 ,H2. . .  Hj exist, then the set of simultaneous equa- 
tions kl = k0 + H1, k2 = k0 + H 2 . . .  kj = k0 + H: exists. In 
particular, kl = k2 + (HI - H2), where (H1 - H2) is also 
a reciprocal lattice vector. In this case, k2 acts as a 
primary beam reflecting from the planes corresponding 
to the vector (H1-H2),  in the direction of the beam 
kl and vice versa. For simultaneous diffraction, each 
diffracted beam will contribute to the intensity of all 
other diffracted beams occurring at the same time. One 
can generalize this statement by indicating that the 
intensity of the reflection H1 may be either increased 
by contributions from all the other beams or de- 
creased by the propagation of energy in directions other 
than kl and the introduction of new extinction paths. 
The net effect depends on the strength of the reflection 
H1 and the relative strength of all the other reflections, 
which depends on the magnitude of the vector (H1-  
H 2 ) .  

It should be pointed o.ut that if the value of the re- 
flection HI is identically zero because the reflection is 
forbidden by the crystal lattice, then there is no mech- 
anism by which multiple diffraction can place intensity 
in the direction kl. If on the other hand the reflected 
intensity Hi is zero because of the structure factor, but 
H~ is still allowed by the lattice, then the effect of the 
dynamical interaction will be to place intensity in the 
direction kl. This latter condition is what is usually 
referred to as the Renninger effect. 

If the number of such simultaneous reflections is 
small, then standard X-ray techniques can be used to 
compute the relative diffraction intensities. A quanti- 
tative treatment of this problem has been made for 
both the case of X-rays and high energy electron dif- 
fraction (Saccocio & Zajac, 1965; Zachariasen, 1965). 

* It should be pointed out that several recent theoretical 
treatments of the dynamical diffraction problem contain 
implicitly the geometry of multiple diffraction. See, e.g. 
Boudreaux & Heine (1967), Kambe (1967), McRae (1966), 
Tournaire (1962). 

A C 24A - 13" 
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The solution of the set of simultaneous equations in- 
volves knowledge of the polarization factor for each 
beam resulting in 2n + 1 equations for n simultaneous 
beams. The polarization of electrons by atomic scat- 
tering has recently been investigated (Bunyan & Schon- 
felder, 1965; Deichsel & Reichert, 1965; Deichsel, 
Reichert & Steidl, 1966; Loth & Eckstein, 1966; Steidl, 
Deichsel & Reichert, 1965) and very large values for 
the polarization for particular angles and voltages re- 
ported.* 

Experimental observations 

A single-crystal plate of tungsten, with a principal sur- 
face normal oriented to within 0.02 o of the [110] direc- 
tion, is mounted in a diffractometer placed in an ultra 
high vacuum system. This double crystal diffractom- 
eter, designed for the polarization experiments, will 
be described in detail elsewhere. In principle it permits 
the continuous rotation of the first crystal about its 
normal, at fixed diffraction angle. For the measure- 
ments described here, the second crystal is replaced by 
an electrostatic mirror, the current being measured by 
a Faraday cage placed in the reflecting position with 
respect to the mirror. A second Faraday cage having 
poor energy resolution (5 eV compared with about 
1 eV) may be positioned in the beam after reflection 
from the first crystal, and is used as a rough check 
on the measurements. An identical crystal prepared in 
the same way is mounted in a standard post accelerated 
diffraction camera. The two crystals receive the same 

* The following rotation diagrams are the first results of a 
program to study the polarization of electrons by diffraction. 
If the polarization factor is known in detail, the problem of 
the diffracted intensities based on a multiple diffraction model 
can in principle be solved. The occurrence of multiple diffrac- 
tion itself indicates that the direct measurement of the polariza- 
tion will be difficult. The results of the polarization measure- 
ments will be published elsewhere. The first attempt to measure 
the polarization of electrons by a double crystal diffractometer 
was by Davisson & Germer (1929). 

treatment, being heated to 2000 °C at 10 .6 torr oxygen, 
until the crystal in the diffraction system exhibits a 
diffraction pattern associated with a clean surface. 

Fig.2 shows intensity v e r s u s  voltage rocking curves 
from these crystals for several well defined orientations 
of the incident beam direction; i .e.  ~o and 0 remain 
fixed for each curve. The most striking feature of these 
curves is the fact that the fractional orders observed 
depend on the direction of the incident beam. The 
curves have strong non-integral orders given by 
1/(h 2 + k 2 +  l 2) for the cases studied, and those of Fig. 2 
show the intensity variation for the three directions 
of highest symmetry only. For arbitrary orientation 
the rocking curves in this energy range show three 
types of characteristic anomalies: the intensity maxima 
are shifted from the normal Bragg position; the inten- 
sity maxima are occasionally split; non-integer orders 
are always present. 

The first two of these features are also observed in 
high energy electron diffraction and can be explained 
by a dynamic theory which treats the interaction be- 
tween simultaneous waves. Non-integer orders are 
strictly forbidden by a three-dimensional reciprocal 
lattice, and are not observed in either high energy elec- 
tron or X-ray diffraction. The presence of fractional 
order maxima implies that the reciprocal lattice must 
be extended for the case of electron diffraction in the 
energy range considered here. A possible origin for 
this extension will be discussed later. 

Fig. 3 shows the rotation diagram for the specularly 
reflected beam when the rocking curve exhibits the 
integral order Bragg maximum shown in Fig. 1. In this 
case, 20=65 ° , the accelerating potential is 595 volts, 
and the specularly reflected beam exhibits the 550 
reflection, about which the rotation is made. At rel- 
atively high voltages, that is for the 440, 550, 660, 770 
reflections (Figs. 3, 4, and 5), each rotation diagram is 
characterized by strong positive intensity variations 
due to the changing conditions for multiple diffraction. 
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Fig.3. Rotation diagram for 20=65 °, 595 volts, about the 550 reflection. Made in the double scattering mode with the second 
crystal replaced by a mirror. The two curves are for parallel and antiparallel orientation of the second scattering geometry and 
exhibit no instrumental asymmetry. 
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As the diffraction angle or the wavelength is varied, 
the general character of the rotation diagrams does not 
change, except that as the volume of reciprocal space 
swept out by the sphere of reflection increases with 
increasing energy the number of maxima observed 
during a rotation increases accordingly (see Figs.3 
and 4). For the 330 reflection shown in Fig. 6 the char- 
acter of the rotation diagram changes; strong negative 
multiple diffraction contributions appearing in the 
specularly reflected beam. 

The lower curve in Fig. 7 shows the number (density) 
of simultaneous reflections as a function of rotation 
angle for the 550 reflection. The position of the struc- 
ture in the rotation diagram is found to agree well with 
the position of the structure in the density plot, al- 

1 
2 13 13 2 ~ Location ofVon (I,V) c u r v e  

A ] ~ ! I]2 3 91OI Brogg max,ma 
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Fig.4. Rotat ion diagram for several diameters of the sphere 
of reflection at constant diffraction angle, 2 0 = 9 0  ° . Upper 
curve 880 reflection (910 eV), middle curve 770 reflection 
(710 eV) lower curve 550 reflection (337 eV). The right hand 
diagrams show the intensity v e r s u s  voltage curve near each 
reflection, for the (110) orientation. 
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Fig. 5. Rotation diagrams for several values of the diffraction 
angle, at constant diameter of the sphere of reflection (700 
volts). Upper curve 20 = 102 °, middle curve 20=  90 °, lower 
curve 20=  65 o. At glancing angles there appears to be less 
structure in the diagram. 

though there is little or no correlation between the re- 
flected intensity and the number of simultaneous re- 
flections, except for the (110) orientation. 

In Figs. 3, 4 and 5 the normal reflection from the 
crystal is particularly strong for the following orienta- 
tions: 

20 = 65 °; 
(001), (1T4), (IT3), (1T2), (1T1), (221), (351), (110), 

20=90°; 
(001), (1T4), (1T3), (1T2), (1T1), (332), (221), (1T0). 

The low index diffraction planes which determine 
the orientation for the strong reflections are all char- 
acterized by having low index rows contained in the 
plane. Although the significance of this fact in the 
determination of the diffracted intensity is not known, 
it is observed that the angle between the direction of 
the diffraction beam and the direction of such a row 
is important. The crystal is found to exhibit an anom- 
alously large reflection coefficient when the electron 
current (the equivalent of the Poynting vector for the 
X-ray case) is parallel to the closely spaced directions 
of the periodic crystal potential. Several of these direc- 
tions correspond to the orientations of the Kikuchi 
bands observed for tungsten at high accelerating volt- 
ages (1500-2000 eV) (Stern & Baudoing, 1967). DeBer- 
suder (1967) has been able to correlate the very broad 
structure of the rotation diagrams for aluminum with 
the presence of strong Kikuchi bands and lines, which 
in this case persist to much lower voltages. 

Interpretation of the angular dependence 
of diffraction intensifies 

Crystal potential and the dynamical theory 

A convenient description of an elastic model of 
multiple electron diffraction may be found in the dy- 
namical theory due to Bethe (1928), which introduces 
the Fourier transform of the periodic lattice in terms 
of the periodic crystal potential Vr 

Vr = S, Vh exp(2zdh • r) (1) 
h 

as a perturbation on the electron wave functions in the 
crystal. Here h is a reciprocal lattice vector and h re- 
presents the triple index: a complete description may 
be found in Ziman (1960, 1964). 

The amplitude of the electron wave, ~'h, diffracted 
into a reflection h, is given to a first approximation by 

~n = Cn + Z '  Vn-~,q~h, 
h' h2[k~-k-~]~Em (2) 

where en is the amplitude of the initial state, and the 
summation is made over the entire reciprocal lattice. 
Individual terms of the sum are large only when the 
energy denominator is small. It is identically zero when 
both reciprocal lattice points H and H '  lie on the sphere 
of reflection. 

Three types of term can be seen to contribute to 
the intensity of the reflection h. The leading term for 
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h - h ' = O  represents the amplitude of the diffracted 
wave when there are only two beams propagating in 
the crystal, and is proportional to Vh. A second distinct 
set of terms are those for which the energy denominator 
is identically zero, i.e. the strong simultaneous beams. 
The remaining contribution is from all the remaining 
reciprocal lattice points, i.e. the weak beams. 

The elastic model then predicts that the variation of 
intensity of the specularly reflected beams as shown in 
the rotation diagram is a result of the exchange of cur- 
rent density among the various terms in the sum of 
equation (2). If one makes the approximation that the 
weak beam contribution is always small, then, since 
the contribution of the leading term is independent of 
the rotation, the first order effect is the exchange of 
current among the strong simultaneous reflections.* 

As shown originally by Bethe (1928) the magnitude 
of Vn depends strongly on the magnitude of h: large 
Vn corresponds to small values of h. When Vn is small, 
or specifically zero, the summation over the strong 
simultaneous reflections can only make positive con- 
tributions to the intensity of the specularly reflected 
beam during the rotation. For the case where the mag- 
nitude of Vn is large, one can expect both positive and 
negative multiple diffraction peaks in the rotation dia- 
gram, as now the normal reflection Vh can contribute 
to the intensities of the weaker multiple reflections. 
Examination of the rotation diagram for 440, 550, 660, 
770, 880, 990, show only positive contributions, while 
the 330 reflection shows mixed positive and negative 
contributions, indicating the relatively greater magni- 
tude of V330.a~ 

* It must be borne in mind that above several hundred 
volts for most metals the elastic secondary current is of the 
order of 10% of the total secondary current and hence inelastic 
processes play a strong role in the diffraction process. We have 
measured the total secondary current as a function of voltage 
at constant angle during the intensity versus voltage curves, 
and at constant voltage during the intensity versus diffraction 
angle rocking curves. In both cases variations in the secondary 
current are observed, which in some instances can be correlated 
with variation in the elastic secondary current, indicating 
merely an exchange in elastic current between the forward 
and back scattering direction. On the other hand the rocking 
curves are accompanied by strong changes in the inelastic 
secondary current with angle, indicating strong changes in the 
inelastic processes accompanying the diffraction. 

The total secondary current increases markedly for small 
values of the diffraction angle, presumably because the escape 
probability for low energy secondaries is large when they are 
produced near the surface as is the case for grazing incidence. 
Recent measurements of the variation of the total secondary 
current made during rocking curves for silver (Ducros & De 
Lafeuille, 1967) and made during both rotation diagrams and 
rocking curves for aluminum (DeBersuder, 1967) show very 
strong variations in the total inelastic secondary current as 
well. A detailed analysis of the total diffraction processes will 
be given in a forthcoming publication. Theoretical treatments 
of the inelastic process for high energy electron diffraction 
have been made by Yoshioka (1957) and Kanuma & Yoshika 
(1966). 

t X-ray Renninger diagrams for these crystals show only 
positive multiple diffraction peaks for the 440 and higher 
reflections and mixed positive and negative peaks for the 330 
and 220 reflections (Post, 1967). 

Fract ional  order m a x i m a  

The foregoing discussion has served to demonstrate 
that the observed intensity maxima in the rocking 
curves are not integer order Bragg maxima, but are 
due to multiple diffraction, and hence exhibit first order 
dynamical effects. This argument can be extended to 
the other features of the rocking curves, especially the 
fractional order peaks which are generally observed. 
Fig. 8 shows the rotation diagram for the very weak 
half order reflection (6.5 6.5 0) shown in the [100] 
rocking curve of Fig.2. For this geometry, 20=90 °, 
and in the case of the rotation diagram the intensity 
of the fractional order peak appears only for the (110) 
orientation of the diffraction plane. In this case, the 
incident direction is [100]. The geometrical construc- 
tion allows a determination of the multiple diffraction 
geometry, and only for the (110) orientation are several 
strong simultaneous reflections permitted, namely 224, 
460 and 130. 

The intensity of the reciprocal lattice rod (110) does 
not necessarily have a maximum at the fractional order 
position observed: the only requirement is that the 
intensity be non-zero at that point. The positions of 
the fractional orders in the rocking curve are only a 
function of the symmetry for multiple diffraction, 
which is dependent only on the orientation of the 
primary beam with respect to the reciprocal lattice, and 
is not connected with any property of the reciprocal 
lattice, except its symmetry. For different directions of 
incidence, other fractional orders appear whose inten- 
sities are related to the shape of the form factor, i.e. the 
appropriate values of Vh-~,. For the few directions of 
high symmetry studied, the fractional orders 1/(h2+ k 2 
+ l 2) appear, when the incident beam is in the [khl] di- 
rection. The cases for [100],[110],[111] are shown in 
Fig. 2, and up to ~- orders have been observed. 

The existence of such fractional orders has been 
pointed out by McRae (1966) for the case of normal 
incidence and for the general case by Boudreaux & 
Heine (1967). 

At this point it is important to note that the gradual 
adsorption of the background gas ambient in the 
vacuum system completely eliminates the observed 
structure in the rotation diagrams, and the fractional 
order peaks in both the rocking curves and the inten- 
sity versus voltage plots. The extraordinary sensitivity 
of the multiple diffraction to the presence of adsorbed 
gas allows one to speculate as to the origin of the mul- 
tiple diffraction structure. 

One striking feature of the diffraction is that it con- 
tains intensities between the allowed Bragg positions, 
i.e. the half integer orders observed in the intensity 
versus voltage curves for the [110] direction. A mech- 
anism for the extension of the reciprocal lattice is 
needed, but because of the large number of diffracting 
planes observed, a purely elastic mechanism based on 
the poor resolving power of the crystal is not possible 
(Boudreaux & Heine, 1967). We would like to propose 
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that this extension is quasielastic; i.e. it is due to phonon 
scattering, the energy loss being too small to detect. 

Recent measurements (Stern & Baudoing, 1967) of 
the temperature dependence of the diffracted intensities 
show that the large amplitude of surface atomic vibra- 
tions is reduced* by the adsorption of many types of 
foreign atoms, and that this reduction is accompanied 
by the suppression of the fractional order diffraction 
maxima in the intensity versus voltage curves. Thus 
the presence of the multiple diffraction effects appears 
to be strongly tied to the vibrational spectrum of the 
surface atoms. 

Detailed examination of the rotation diagrams shows 
no simple rule for determining the strength of a par- 
ticular reflection Vh-h'. It is tempting to assume that 
because the surface of the crystal plays such an im- 
portant role in the diffraction, surface reflections should 
be in some way exceptional. On this basis, one would 
expect the equatorial intersections of the sphere of re- 
flection with the reciprocal lattice to exhibit special 
properties. Furthermore, if the reciprocal lattice is truly 
two-dimensional, and there is no intensity variation 
along the reciprocal lattice rods, only when such a rod 
enters or leaves the sphere of reflection should there 
be a change in the multiple diffraction condition. The 
importance of surface reflections (resonances) has been 
shown for alkali-halides (McRae & Caldwell, 1967), 
but the rotation diagrams described show no indication 
of these effects, although their existence at very low 
orders is not precluded. Furthermore, each intersection 
of the sphere of reflection with the expected position 

* It is observed that the Debye-Waller factor is reduced, the 
angular spread of the diffraction feature is decreased and in 
addition the thermal diffuse features are suppressed. 

of a reciprocal lattice point is recorded in the rotation 
diagram indicating the presence of structure in the 
reciprocal lattice rods and the strong three-dimensional 
character of the diffraction. 

Comparison with the two-beam model 

This description of the effect of multiple diffraction 
is sufficiently complete to allow a comparison of the 
predictions of the model with those of the kinematical 
or two-beam description of the diffraction. The sur- 
prising result in the case where multiple diffraction 
predominates is the elimination of true Bragg peaks. 
In the two-beam model, the normal Bragg intensities 
are connected in a simple way with the diffraction 
properties of the lattice in a particular direction. For 
example, in the two-beam model the effective Debye 
temperature, as determined by the temperature depen- 
dence of the Bragg peak, is a measure of the amplitude 
of thermal vibration of a particular set of reflecting 
planes, while in the multiple diffraction case, it is a 
measure of the average vibrational amplitude in those 
directions given by a set of interactions for a given 
geometry. Its voltage dependence is therefore a measure 
of the way in which that average changes (Stern & 
Baudoing, 1967)*. The angular dependence of the 
Debye temperature now becomes a measurement of 
the way in which the multiple diffraction conditions 
change with incident angle rather than the way in which 

* The Debye temperature measured for non-normal reflec- 
tions appears to be anomalously large compared with the bulk 
value (Aldag & Stern, 1965; Stern & Baudoing, 1967). If 
multiple diffraction is dominant, then the normalization with 
respect to sin 0/2 is incorrect because of the averaging over a 
range of angles, which leads to too large a value for OD. 
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the vibrational amplitude changes with direction as 
interpreted by McRae (1965). The appearance of frac- 
tional orders in the rocking curve is not due to the 
shape of the reciprocal lattice determined by surface 
steps of defects,* but only to the multiple diffraction 
geometry. Since in the case of tungsten the relative con- 
tribution of the Bragg maxima for all but the lowest 
orders is nearly zero, all these interpretations must be 
considered in terms of the multiple diffraction case. 

Inelastic anisotropy 

The above discussion has been limited to the elastic 
part of the diffracted spectrum. The total secondary 
current contains strong variations in the distribution 
of electrons in both energy and momentum space. 
These variations have their origin in the dispersion 
relations for the various inelastic excitations possible 
in the crystal as the conservation laws place restrictions 
on the relationship between the change of energy and 
momentum for the electrons for a given excitation. 
Since a complete description of the scattering of elec- 
trons by a crystal must contain the details of the im- 
portant interactions, it is of interest to look for aniso- 
tropy in inelastic excitations. 

The apparently strong surface anisotropy of the 
phonon distribution in the (110) surface of tungsten 
(Aldag & Stern, 1965) evidently contributes second 
order dynamical effects to the overall anisotropy of 
the diffraction. In general, the experimental techniques 
used to measure the diffracted intensities allow suf- 
ficient energy resolution to permit the exclusion of elec- 
trons which have suffered inelastic scattering by all 
mechanisms, except phonon interactions which can 
only be eliminated by low temperature diffraction ex- 
periments. 

It is possible to isolate certain regions of the inelastic 
spectrum which contribute significantly to the diffracted 
current. The energy loss characteristic of both the sur- 
face and bulk plasma excitations from the (110) tung- 
sten surface have been observed (15 and 22 volts re- 
spectively) (Scheibner & Tharp, 1967). A difference be- 
tween the rotation diagrams for elastic and inelastic 
electrons should indicate the anisotropy of those scat- 
tering mechanisms contained in the included energy 
range. Fig. 9 shows the elastic rotation diagram (lower 
curve) and the inelastic rotation diagram (upper curve) 
for a range of energies (about 50 volts) where the only 
scattering mechanisms expected to predominate are the 
plasma excitations. 

In the purely elastic diffraction model, the rotation 
diagrams exhibit structure due to the exchange of inten- 
sity between the elastically diffracted beams. We have 
observed that the total secondary current also varies 
during the rotation, and that the inelastic diffracted 

* See, e.g. the papers on this subject in the Proceedings of 
the 1966 Durham Conference on the Structure of Surfaces, 
and The Proceedings of the 22nd MIT Physical Electronics 
Conference, 1967. 

current has a different angular dependence than the 
elastic current. A complete description of the diffrac- 
tion must also consider the exchange of intensity be- 
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Fig. 9. Rotation diagram showing the difference between the 
intensity variation of the elastic beam excluding losses of 
more than three volts (lower curve) and the inelastic beam 
including losses of up to 60 volts. The rotation is from 
fo = 0 to ~0 = 180 °, and the position of the low index planes 
of the [110] zone is indicated. 

tween the elastic and inelastic spectrum, as well as the 
exchange between forward and backward elastic dif- 
fraction. 

Conclusions 

It has been shown that the intensities in low energy 
electron diffraction are due to the presence of strong 
dynamical interactions. In particular, the apparent 
Bragg maxima of both integral and non-integral order 
are completely anomalous on the basis of a two-beam 
kinematical model and have their origin in the sym- 
metry conditions for multiple diffraction. As in X-ray 
and high energy electron diffraction, the dynamical 
theory is made possible by the knowledge of the details 
of the interaction of the several waves propagating in 
the crystal. In low energy electron diffraction this inter- 
action is shown to be very important since there exist 
many simultaneous waves and the mutual interactions 

are strong. Because of the strength of the inelastic 
scattering mechanisms it is also necessary to consider 
the details of the latter, to explain the anisotropy of 
the diffraction completely. The danger of interpretation 
of diffraction effects on the basis of a two-beam kine- 
matical model when strong dynamical effects are pre- 
sent is evident. 

The authors wish to acknowledge helpful discussion 
with Prof. P. Ducros and K. Kambe. 
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